Search
๐ŸŒ

b3.4_5.1_1.1____2.1.1. title: The result of the inner product must be greater than zero if the vector is not zero. This can be related to the length of a vector and is very useful when trying to understand abstract vector spaces.

The result of the inner product must be greater than zero if the vector is not zero.
vโ‰ 0โ‡’โŸจv,vโŸฉ>0\mathrm{v \neq 0 \Rightarrow \lang{v,v}\rang > 0}
This condition for a inner product can be related to the length of a vector(from2) and is very useful when trying to understand abstract vector spaces.
Example 1. Let E=R2[x]E = \mathbb{R}_2[x](from4) and the mapping Eร—Eโ†ฆRE \times E \mapsto \mathbb{R} is defined by:
โŸจP,GโŸฉ=โˆซ0+โˆžP(x)Q(x)eโˆ’xdx\lang{P, G}\rang = \int^{+\infin}_0P(x)Q(x)e^{-x}dx
How can we show โŸจP,GโŸฉ\lang{P, G}\rang is an inner product over EE? If you are just understanding the inner product as โ€˜dot productโ€™ which is called โ€˜standard inner productโ€™, it might be difficult to see how we can interpret as an inner product. One of the conditions(from1) which I just mentioned in this document is particularly challenging to apply.
Pโ‰ 0โ‡’โŸจP,PโŸฉ>0\mathrm{P \neq 0 \Rightarrow \lang{P,P}\rang > 0}
Check the โ€˜customโ€™ inner product โŸจP,GโŸฉ\lang{P, G}\rang permits the condition.
โŸจP,PโŸฉ=โˆซ0+โˆžP(x)P(x)eโˆ’xdx\lang{P, P}\rang = \int^{+\infin}_0P(x)P(x)e^{-x}dx
=โˆซ0+โˆž(P(x))2eโˆ’xdx>0= \int^{+\infin}_0(P(x))^2e^{-x}dx > 0
eโˆ’xe^{-x} is greater than 00 over [0,+โˆž)[0, +\infin) and (P(x))2(P(x))^2 is greater than 00 if P(x)โ‰ 0P(x) \neq 0 over [0,+โˆž)[0, +\infin), โŸจP,GโŸฉ\lang{P, G}\rang could be an inner product.
Example 2. Let EE be the vector space of the continuous functions on [0,1][0, 1], together with the inner product.
โŸจf,gโŸฉ=โˆซ01f(t)g(t)dt\lang{f, g}\rang = \int^1_0f(t)g(t)dt
Consider the linear subspace FโŠ‚EF \subset E, how can we show this?
FโŠฅ={0E}F^\perp =\{0_E\}
Letโ€™s rewrite the FโŠฅF^\perp(from3).
FโŠฅ={gโˆˆEโˆฃโŸจf,gโŸฉ=0,โˆ€fโˆˆF}F^\perp =\{g \in E | \lang{f,g}\rang=0, {\forall}f \in F\}
Then we might see:
1.
If f(x)=0f(x) = 0 over [0,1][0, 1], gg could be anything (include 0E0_E)
2.
If f(x)โ‰ 0f(x) โ‰  0 over [0,1][0, 1], gg must be 0E0_E
To permit both conditions 1 and 2, FโŠฅF^\perp should be:
FโŠฅ={0E}F^\perp =\{0_E\}
parse me : ์–ธ์  ๊ฐ€ ์ด ๊ธ€์— ์“ฐ์ด๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™์€ ์žฌ๋ฃŒ๋“ค.
1.
None
from : ๊ณผ๊ฑฐ์˜ ์–ด๋–ค ์ƒ๊ฐ์ด ์ด ์ƒ๊ฐ์„ ๋งŒ๋“ค์—ˆ๋Š”๊ฐ€?
3.
4.
supplementary : ์–ด๋–ค ์ƒˆ๋กœ์šด ์ƒ๊ฐ์ด ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ์„ ๋’ท๋ฐ›์นจํ•˜๋Š”๊ฐ€?
1.
None
opposite : ์–ด๋–ค ์ƒˆ๋กœ์šด ์ƒ๊ฐ์ด ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ๊ณผ ๋Œ€์กฐ๋˜๋Š”๊ฐ€?
1.
None
to : ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ์ด ์–ด๋–ค ์ƒ๊ฐ์œผ๋กœ ๋ฐœ์ „๋˜๊ณ  ์ด์–ด์ง€๋Š”๊ฐ€?
1.
None
์ฐธ๊ณ  : ๋ ˆํผ๋Ÿฐ์Šค
1.
None